Oxidative stress induced Interleukin-32 mRNA expression in human bronchial epithelial cells

نویسندگان

  • Megumi Kudo
  • Emiko Ogawa
  • Daisuke Kinose
  • Akane Haruna
  • Tamaki Takahashi
  • Naoya Tanabe
  • Satoshi Marumo
  • Yuma Hoshino
  • Toyohiro Hirai
  • Hiroaki Sakai
  • Shigeo Muro
  • Hiroshi Date
  • Michiaki Mishima
چکیده

BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction and persistent inflammation in the airways and lung parenchyma. Oxidative stress contributes to the pathogenesis of COPD. Interleukin (IL)-32 expression has been reported to increase in the lung tissue of patients with COPD. Here, we show that IFNγ upregulated IL-32 expression and that oxidative stress augmented IFNγ-induced-IL-32 expression in airway epithelial cells. We further investigated transcriptional regulation responsible for IFNγ induced IL-32 expression in human airway epithelial cells. METHODS Human bronchial epithelial (HBE) cells were stimulated with H2O2 and IFNγ, and IL-32 expression was evaluated. The cell viability was confirmed by MTT assay. The intracellular signaling pathways regulating IL-32 expression were investigated by examining the regulatory effects of MAPK inhibitors and JAK inhibitor after treatment with H2O2 and IFNγ, and by using a ChIP assay to identify transcription factors (i.e. c-Jun, CREB) binding to the IL-32 promoter. Promoter activity assays were conducted after mutations were introduced into binding sites of c-Jun and CREB in the IL-32 promoter. IL-32 expression was also examined in HBE cells in which the expression of either c-Jun or CREB was knocked out by siRNA of indicated transcription factors. RESULTS There were no significant differences of cell viability among groups. After stimulation with H2O2 or IFNγ for 48 hours, IL-32 expression in HBE cells was increased by IFNγ and synergistically upregulated by the addition of H2O2. The H2O2 augmented IFNγ induced IL-32 mRNA expression was suppressed by a JNK inhibitor, but not by MEK inhibitor, p38 inhibitor, and JAK inhibitor I. Significant binding of c-Jun and CREB to the IL-32 promoter was observed in the IFNγ + H2O2 stimulated HBE cells. Introducing mutations into the c-Jun/CREB binding sites in the IL-32 promoter prominently suppressed its transcriptional activity. Further, knocking down CREB expression by siRNA resulted in significant suppression of IL-32 induction by IFNγ and H2O2 in HBE cells. CONCLUSION IL-32 expression in airway epithelium may be augmented by inflammation and oxidative stress, which may occur in COPD acute exacerbation. c-Jun and CREB are key transcriptional factors in IFNγ and H2O2 induced IL-32 expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myeloperoxidase modulates lung epithelial responses to pro-inflammatory agents.

During extensive inflammation, neutrophils undergo secondary necrosis causing myeloperoxidase (MPO) release that may damage resident lung cells. Recent observations suggest that MPO has pro-inflammatory properties, independent of its enzymatic activity. The aims of the present study were to characterise MPO internalisation by lung epithelial cells and to investigate the effect of MPO on oxidati...

متن کامل

Stimulation of human bronchial epithelial cells by IgE-dependent histamine-releasing factor.

An IgE-dependent histamine-releasing factor (HRF p23; also known as translationally controlled tumor protein or p23) stimulates the release of histamine, IL-4, and IL-13 from a subpopulation of highly allergic donor basophils. It has also been shown to act as a chemoattractant for eosinophils. To elucidate novel functions of HRF p23 in airway inflammation, we examined the effects of human recom...

متن کامل

Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking

BACKGROUND Cigarette smoking-induced oxidative stress is known to be a key mechanism in COPD pathogenesis. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a central transcription factor that regulates the antioxidant defense system. The aim of this study was to compare Nrf2 expression in COPD subjects and control subjects, and to determine the role of Nrf2 in protecting against oxidative ...

متن کامل

Gene expression in normal human bronchial epithelial (NHBE) cells following in vitro exposure to cigarette smoke condensate.

Cigarettes that burn tobacco produce a complex mixture of chemicals, including mutagens and carcinogens. Cigarettes that primarily heat tobacco produce smoke with marked reductions in the amount of mutagens and carcinogens and demonstrate reduced mutagenicity and carcinogenicity in a battery of toxicological assays. Chemically induced oxidative stress, DNA damage, and inflammation may alter cel...

متن کامل

Oxidative stress enhances the expression of IL-33 in human airway epithelial cells

BACKGROUND Interleukin-33 (IL-33) is a cytokine belonging to the IL-1 family, and its possible involvement in the pathophysiology of COPD and viral-induced exacerbations has been demonstrated. IL-33 has been shown to be increased in the airway epithelial cells from COPD patients, but the regulating mechanism of IL-33 expression in airway epithelial cells remains largely unknown. In the current ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012